A Message from the Chair…

Development in the KIN Department

It was another great year for the Kinesiology and Sport Sciences (KIN) department. The Sport Administration online program continues to flourish, visiting scholars, clinicians, and volunteers from all over the world are attending our laboratories to gain experience and research publications/presentations by KIN faculty and students are at an all time high. We have a record number of undergraduate students now doing research and giving presentations at the regional and national level. Many of our graduates are now working in key research positions in clinical positions in various medical schools and in the business and commercial enterprise.

Furthermore, our Athletic Training program is now moving to a graduate program whereby students must complete a Master of Science Degree in Athletic Training before being able to sit for the Board of Certification examination to become a licensed Athletic Trainer. The current undergraduate program will soon become a feeder and preparatory program for the new Masters degree program in Athletic Training.

We also have our first faculty members serving as Co-principal investigator for a federally funded grant from the National Science Foundation. In this grant, called Project Trees, robots are used to enhance learning in an inclusion classroom of elementary school children.

We have also held our first Miami Sport Industry Conference where leaders in the field of Sport Administration from Miami and all over the country have come together to discuss the future direction, focus, and opportunities available in the sport industry.

Sincerely,

Dr. Arlette Perry, Chair
Kinesiology and Sport Sciences Department
University of Miami

HIGHLIGHTS INSIDE THIS ISSUE:
2 Athletic Training at Dolphins Cancer Challenge
7 Guardrails
13 Miami Sport Industry Conference
On Saturday February 20th, the Athletic Training (AT) Program travelled with students to SunLife Stadium to act as the medical staff for an event. In contrast to similar voyages during every Fall semester, the Hurricane’s football team wasn’t their patient population, and the grass field in the stadium wasn’t the AT student’s office. Rather, the AT Program partnered with Sylvester Comprehensive Cancer Center physicians and staff to provide medical services for the participants in the 6th annual Dolphins Cancer Challenge (formerly Dolphins Cycling Challenge). Launched in 2010 as the signature initiative of the Miami Dolphins Foundation, the DCC is an event where 100% of participant-raised funds goes to innovative cancer research at the Sylvester Comprehensive Cancer Center in downtown Miami. This year’s DCC event featured over 3,300 participants cycling rides that ranged from 13 up to 100 miles.

AT students were stationed at the finish line where they provided basic medical needs and musculoskeletal treatments. The AT students primarily focused on stretching techniques for the finished participants, who ranged from seasoned cyclists to first-time riders. The students provided care for lower extremity pain and discomfort, as well as lumbar spine conditions. It was engaging and fun for the students to interact with patients who had a real cause for participating in this athletic endeavor. While the students used the opportunity to strengthen their clinical skills, it also provide a forum to advocate for UM and the Kinesiology and Sport Sciences Department.

The students and staff hope to return in February 2017, for DCC VII, and provide expanded services for those participants in need of the unique skill set a University of Miami Athletic Trainer can provide.
As noted in their symposium guide, the Leadership Alliance is “a consortium of institutions of higher education dedicated to improving the participation of underrepresented students in graduate school.” Mr. Tiwaloluwa Ajibewa was a student in the flagship program entitled the Summer Research-Early Identification Program (SR-EIP) in 2013. During his ten-week research experience, running from May 19, 2013 to July 26, 2013, Mr. Ajibewa worked under his assigned research mentor, Dr. Joseph Signorile, at the Max Orovitz Laboratory Complex. The SR-EIP provided students the opportunity to be active participants in the research process from hands-on data collection through the production of scholarly presentations. After completing their research, our SR-EIP participants attended the Leadership Alliance Symposium along with 300 program undergraduates to present the results of their summer projects to a national audience of peers, faculty and members of the private and public sectors.

Leadership Alliance recognizes the importance of faculty who serve as mentors and the valuable contribution they make to support students during the summer, noting that their motivation is merely their “commitment to the ideals and goals of scholarly research” rather than any “immediate, tangible benefit”. Yet, there is a famous African proverb: "It takes a village to raise a child" which is a tradition that we have adopted with the research interns here at the Max Orovitz laboratories. Although Dr. Signorile was Tiwaloluwa’s research mentor, he had the opportunity to work with our remarkable graduate research assistants, as well as the undergraduate and high school students that typically work at the laboratory during the summer; often without compensation.

The impetus for this article is not to show the mentorship at our laboratory as much as it is to provide a tangible picture of how programs like SR-EIP can be effective in partnership with a vibrant research laboratory. On Friday, February 26, Tiwaloluwa sent us the following e-mail which is relayed here in his own words.

“It has been way too long!! I caught up with Anoop this morning and he was telling me about how he is almost finished with his PhD, and his plans for his next endeavor after the PhD program at Miami. Thank you once again for giving me the opportunity to work in your lab three summers back. It has been a privilege to be able to maintain contact over the years with you, Anoop, and Hector.”
We asked Tiwa, as we called him, to please expand upon his experience at the Max Orovitz laboratories and what it meant to him. Below is his response.

“Over the course of my ten-week research experience, I had the privilege of learning many new things, while making and working with new friends. As an undergraduate majoring in biology, I knew a bit about the basics of physiological systems of the human body, but not much about kinesiology or exercise physiology. Nevertheless I used my summer research as an opportunity to gain insight into the field of kinesiology, and to see whether it would be a field that I would be interested in pursuing in graduate school. Luckily for me, I was placed in a lab where I learned valuable information about kinesiology, athletic training, biology, and even physics, from Dr. Signorile, Dr. Harrell, and many other faculty members and graduate students who are part of the lab. The value of my experience in Dr. Signorile’s lab was invaluable. Being able to do hands on research with subjects, and working with other students interested in the kinesiology field, coupled with the amazing faculty who were willing to always explain things to you, really made my time in Miami invaluable. I gained insight into the key aspects of conducting research, and I had the opportunity to be part of multiple studies that were going on. It was this program that cemented my interest in graduate studies, and it was an experience that I will never forget. After completing my undergraduate degree in the spring of 2014, I enrolled in a Master’s program in Health and Human Physiology at the University of Iowa, working under the tutelage of Dr. Gary Pierce. Here I was able to gain additional experience learning about human physiology through various courses such as Cardiovascular and Exercise Physiology. I will be completing both my thesis project looking at the influence of anxiety and vascular function, and finishing my Masters degree at the University of Iowa in the department of Health and Human Physiology. A couple of weeks back, I learned about my admission into the Kinesiology doctoral program at the University of Michigan where I’ve decided to pursue my PhD.”

We at the Max Orovitz Laboratory would like to congratulate Tiwa on his admission to the doctoral program at the University of Michigan. We derive great joy from the success of our student interns.
The Miami Marlins Foundation has long been a partner and supporter of the UM Sport Administration program. Each year, the Marlins Foundation provides a $7,500 scholarship to the graduate student in Sport Administration who earns the Harry Mallios Award. The Harry Mallios Award was established in honor of Harry Mallios, founder of the UM Sport Administration program, to recognize and reward graduate students who best exemplify sport industry leadership. The Mallios Award goes to the graduate student with the highest GPA and most outstanding sport industry service/experience. The 2016 winner of the Mallios Award and Marlins Foundation Scholarship was Angel Albelo. On Saturday, April 16th, the Marlins Foundation recognized Angel and its partnership with UM SPAD on field at the Marlins/Braves game at Marlins Park. The check presentation and on-field celebration was part of University of Miami night hosted annually by the Marlins. Angel Albelo, Dr. Windy Dees, and members of the Marlins Foundation took part in the on-field check presentation.

Drs. Youngmee Kim and Joe Signorile Receive Provost’s Research Award for 2017

The Research Council has selected Dr. Youngmee Kim of the Department of Psychology and Dr. Joe Signorile of the Department of Kinesiology and Sport Science to receive a Provost’s Research Award for the fiscal year 2017. The proposed “Healthy U/Healthy Us” intervention is designed to address the physical declines in colorectal cancer survivors and their primary support persons through lifestyle changes precipitated through regular exercise and proper nutrition. The term of the award will run from June 1, 2016 through May 31, 2017.

Colorectal cancer (CRC) is the third most common cancer in both men and women and is most prevalent among older persons. Besides increased vulnerability to health problems due to the cancer treatments, age and overweight/obesity typical of colorectal cancer survivors significantly increases their risk for functional decline. Primary support partners of CRC survivors are also vulnerable to pre-mature health problems due to stresses the disease and the effort of care brings to the family and close friends. Despite the substantial concern about functional decline and
numerous evidence-based healthy lifestyle recommendations, the majority of the survivors and their partners develop poor dietary habits and fail to meet minimal activity associated with a healthy lifestyle.

The most accepted for the negative lifestyle profile in survivors and their partners are:
(a) Elevated stress from having cancer in the family competes with their desire to make positive behavioral changes.
(b) The failure the partner or survivor to mutually support a change in dietary and physical activity habits and to maintain those positive changes together.
(c) The majority of existing dietary and physical activity programs are not tailored for older cancer survivors and their support members.
(d) Participating in a behavioral intervention often requires a large time commitment and is inconvenient, as those interventions are typically offered in a group classes and is restricted to specific class hours.

The “Healthy U/Healthy Us” intervention proposed is a 30-minute, 12-week program designed to fully address all these concerns. The intervention is guided by Self-Determination Theory and is delivered via Skype. This study will test the efficacy of this intervention in slowing the decline in physical function and increase in BMI as primary outcomes, and improved dietary choices and increased physical activity as modifying factors. These positive changes are hypothesized to be more likely to occur and be sustained when participants perceive that their partner supports their psychological needs for autonomy, competence, and relatedness. The positive effects of the intervention are also likely to have a synergistic impact between survivors and partners, whereby both optimize the health benefit of the intervention. As this intervention capitalizes on a “person side” of technology it can potentially yield meaningful improvement in health of large number of older CRC survivors and their partners, who constitute an understudied and difficult to reach, yet at a high risk for morbidities. Overall, the proposed study will fill a gap in cancer survivorship care and public health through sound theoretical and innovative approaches, which have the potential to advance the applied science and health care for cancer survivors, their families, and their close friends.

This grant presented to these faculty further demonstrates the mutual benefits of the collaborations which exist between the Department of Kinesiology and other department throughout the university in the application of activity- and nutritional-based interventions to address prevention and rehabilitation in diverse clinical populations.
The Guardrails Sports Performance is a branch of the Guardrails Prevention Initiative that serves University of Miami student-athletes, and professional athletes in the area, by providing a detailed musculoskeletal and nutrition assessment, with consultation. Using a sport-specific design, graduate candidate, Vanessa Lara, coordinates the project under the direction of Dr. Wesley Smith and with the collaboration of Dr. Lee Kaplan the Marlins team physician and Chair of UM Sports Medicine. The objective of this service is to assess athletes in a time-efficient manner. The group has tested the Miami Marlins, the UM Football players, athletes training for the olympics, and is available to all UM student-athletes. Athletes are asked to perform simple movement tasks, grip strength, and to answer a thorough questionnaire regarding their eating and sleeping habits. The team is then provided with a checklist to supplement informed nutrition counseling from Nutrition and Human Performance graduate students or team coaches/staff. The purpose of the assessment is to: 1) provide a baseline musculoskeletal assessment that allows coaches to individualize workouts, correct imbalances and thus, prevent injuries; 2) educate athletes on nutrition habits that could further decrease their risk of injury, improve their performance and overall health. UM students receive practicum hours for their service, and the data can be used for future research projects.
The Guardrails Prevention Initiative serves the community while exploring the value of integrated wellness programming in clinical settings. Using the Guardrails assessment and consultation platform, doctoral candidate Craig Flanagan is involved with a collaborative research effort with Dr. Lee Kaplan and UHealth Sports Medicine. The intervention is designed to improve outcomes in patients undergoing arthroscopic knee surgery. Patients receive: 1) Guardrails dietary and physical activity assessment and consultation; 2) FitBit fitness tracking devices to patients; 3) Guardrails assessment and consultation and fitness tracking devices; or 4) conventional rehabilitation alone. Along with students Brijesh Patel and Shayna Darnell, and under the direction of Dr. Wesley Smith, Flanagan’s project aims to mitigate negative shifts in body composition, functional capacity, and cardiometabolic disease risk factors associated with the largely inactive surgical recovery period. In addition, the project seeks to test the usefulness of integrating wearable fitness technology in a clinical setting.

Helen Ortiz, a senior in the Exercise Physiology program has been working with Dr. Wesley Smith all semester on adapting the Guardrails Assessment program for use in rural areas in Ecuador. Helen approached Dr. Smith with the idea last semester after participating in a week-long medical mission program the previous summer. The program serves to gauge the nutritional needs and attitude of the community so that more work may be done in future years. The program will provide patients with a health assessment, nutritional guidelines, and address areas of concern such as risk for Type 2 Diabetes. A nutritionist in Ecuador is currently reviewing the program to adjust for cultural differences that may arise, and a local doctor will help administer the program. The program will serve as Helen’s senior internship project, and she hopes that it will grow and expand in the future.
Olympic lifts have now become a common training tool for everyone from the professional athlete to the fitness enthusiast at the local Crossfit gym. Among the most relevant questions associated with these lifts is the nature and quantification of the individual forces working on the spine during their performance. In their article "Examination of a lumbar spine biomechanical model for assessing axial compression, shear, and bending moment using selected Olympic lifts" published in the May issue of the Journal of Orthopaedics, Drs. Moataz Eltoukhy, Joseph Signorile and recent graduate Dr. Hector Heredia-Vargas in collaboration with Drs. Frecesco Travascio, Shihab Asfour and their student Shady Elmary presented results from an innovative biomechanical model of the lumbar spine. Given the interest generated by this article, it appears that the model presented will constitute an important clinical tool for the assessment of forces during these lifts, as well as other training methods and competitive events.

This is the latest in a series of articles from the Max Orovitz laboratories and its collaborators to have gained national recognition. As you may no doubt recall, the articles "High-speed circuit training vs hypertrophy training to improve physical function in sarcopenic obese adults: a randomized controlled trial" by Anoop Balachandran, Steve Krawczyk, Melanie Potiaumpai and Joseph Signorile published in the December issue of Experimental Gerontology and "Muscle utilization patterns vary by skill levels of the practitioners across specific yoga poses (asanas)" by Meng Ni, Kiersten Mooney, Anoop Balachandran, Luca Richards, Kysha Harriell and Joseph Signorile, printed in the August issue of Complementary Therapies in Medicine both reached to top ten most cited articles for those journals in 2014.
Thanks to a collaboration between the Department of Kinesiology and Sports Science and The School of Architecture the University’s first AMEDA devices have been introduced to the campus. These devices are used to evaluate proprioception. Simply stated, proprioception is individuals’ awareness of the position of the positions of various body parts relative to each other. Decreased proprioception has been linked to gait disorders, decreased independence and higher fall risk in everyone from persons rehabilitating from injury to older individuals with and without chronic disease states such as Parkinson’s disease or diabetes. The AMEDA devices will be used for clinical assessments, as well as research.

The devices are currently being used in a Yoga Meditation study comparing specially-designed meditation programs to standard programs in improving proprioception in older fallers and individuals with multiple ankle sprains. These assessments will be added to an existing test battery including 3D movement analyses during gait and stair climbing, computerized isoinertial strength and power testing and isokinetic joint position and joint kinesthesia testing as part of the pretest/post-test comparisons in this study. The Laboratory of Neuromuscular Research and Active Aging and Laboratory of Sports Medicine and Motion Analyses will also be adding AMEDA assessments to evaluations of individuals with ankle sprains, knee injuries and reduced executive function to assess the impact of proprioception on these populations. Additionally, we hope to provide an in-service to the University’s Athletic Training, Sports Medicine, and Physical Therapy Departments.

Exercise Physiology Professor Dr. Joseph Signorile and Exercise Physiology Master’s Student Savannah Wooten sought out a means of building the devices and found the Woodshop Manager at The School of Architecture, Alaric “Jay” Inzko (see Figure 1).
Jay works under the directorship of Dr. Jose Maria Churtichase, Associate Dean and Professor of Architecture, and Director of Master of Architecture Program. Thanks to Mr. Inzko's skills and the willingness of the School of Architecture to help with the construction of the device, the plans have now materialized into working assessment tools.

The Active Movement Extent Discrimination Apparatus (AMEDA) (Knee).

The Knee AMEDA is designed to assess proprioception at the knee and hip. Subjects stand in a normal weight bearing stance astride the apparatus, with heads up and eyes focused on a point on the wall opposite, so that they had no direct vision of their foot or the contact plate (see Figure 2). During actual testing the wear goggles with the lower hemispheres blackened to prevent them from seeing the apparatus, and a four-legged cane is used to maintain balance. The contact plate is set to one of the three positions and, on command, movements are made by transferring weight to one leg. The other leg is then swung first backward touching the start bar behind the subject, and forward to a plate until contact is made. The subject then returns to a standing position and indicates if the kick plate is at position 1, 2, or 3. Each subject is given a series of practice movements on the AMEDA so he or she may become familiar with the "feel" of each plate setting prior to data collection. Following this, all three stop positions are presented randomly across 50 trials. Subjects are allowed only one leg swing movement for each trial. After each movement the subject is asked which of the three stop numbers corresponded to the movement performed. The reported stop positions are recorded for each of the 50 trials, and compared to the known randomized order. No feedback is provided during testing.

The Active Movement Extent Discrimination Apparatus (AMEDA) (Ankle).

The procedure for the ankle AMEDA is the same as for the knee; however, the function of the device varies considerably. The subject stands on the box straddling the centrally located pivoting footplate. While keeping weight evenly distributed on both feet the subject actively inverts his or her foot at a steady pace. The plate then moves into inversion until it is stopped by a wooden block placed vertically under the outer edge (see Figure 3). In this way a test series of movements to different stop heights can be made, each followed by an absolute judgment made without feedback. Three wooden blocks were cut to create physical differences for a set of inversions.
Upon the cue “move,” a steady-paced ankle inversion movement is made until the footplate physically stops. After contact is made with the wooden block beneath the apparatus, the participant returns the plate to the horizontal stop. As was the case with the knee AMEDA test, the participants provides a number from 1 to 3 corresponding to the "felt" position.

Thanks to the carpentry skills of Jay Inzko, the woodshop facilities at the School of Architecture, the willingness of the School of Architecture to collaborate with the School of Education and Human Development on this project, the devices are aesthetically beautiful and functional assessment tools that will be used at the Max Orovitz Laboratory. We look forward to further collaborations in the future between the departments as we continue to solve problems that can improve both clinical and research practices.

Figure 3. (a) AMEDA ankle apparatus with subject everting ankle and foot plate touching stop block; and, (b) the original drawing once again before our modifications.
The TechB Conference is dedicated to bringing together the most influential people, ideas and research from diverse backgrounds in the arenas of Behavior Analysis and Technology. The conference is mainly about the use of technology in children’s behavior analysis. It took place on April 9, 2016 where KIN Professor Dr. Moataz Eltoukhy spoke on his projects with the conference humanoid robots.

On April 15-16, 2016, USPORT—the undergraduate student association for the Sport Administration program—hosted the inaugural University of Miami Sport Industry Conference.

The event brought 225 sport industry professionals and candidates from across North and South America together for dialogue and discourse over the most pressing issues facing the sport industry.

The first day of the conference featured six panels on topics ranging from protecting the professional athlete to marketing to millennials and monetizing social media to how teams can optimize analytical data. Speakers included Dwyane Wade’s manager, Maria Sharapova’s sports agent, Steph Curry’s marketing agent and leaders from entities including, ESPN, NFL, MLB, PGA TOUR, Homestead-Miami Speedway, the Miami HEAT, Miami Dolphins, Miami Marlins and more.

Keynote speaker Matt Birk and the Sport Administration Faculty
During a keynote luncheon on day one of the conference, 15-year NFL veteran and current NFL Director of Football Development, Matt Birk, gave an engaging speech about how preparation is the key to success and the need for football in an American communities as the sport faces threats to its future existence.

Conference attendees networked at a career fair during day two of the conference. Sport industry companies, including ESPN, Homestead-Miami Speedway, Fort Lauderdale Strikers the Miami Dolphins, Miami FC and Orange Bowl, collected resumes and engaged with sport industry candidates to fill open positions.

The conference was well enjoyed by student and professional attendees.

“The inaugural University of Miami Sport Industry Conference was by far one of the best conferences that I have attended as an aspiring sport business professional. Each panel allowed participants to not only hear an overview of how each panelist is filling a space in the industry, but also what new trends are arising and how aspiring professionals can capitalize on those markets and make their way into the industry. The relationships built while attending this conference were second to none and I look forward to attending in the years to come,” said attendee, D'Bria Bradshaw, a J.D./MBA student at St. Thomas University.

Luis Morales, the St. Louis Cardinals’ assistant director for international operations echoed those sentiments. “Having a career in sports is extremely hectic and gives you little time for continuing education. The University of Miami Sport Industry Conference provided not only students, but also sport professionals, the opportunity to network and learn about the latest trends in sport business.”

To learn more about the University of Miami Sport Industry Conference, you can visit www.miamisportconference.com or follow the conference’s Twitter account @UMiamiSIC.
The Kinesiology and Sports Sciences Department submits a record number of submissions to the American College of Sports Medicine Annual Meeting, World Congress on Exercise is Medicine® and World Congress on The Basic Science of Energy Balance

The ACSM Annual Meeting, World Congress on Exercise is Medicine and World Congress on The Basic Science of Energy Balance will be held from May 31 - June 4, 2016 in Boston, MA. This is arguably the premier Sports Medicine conference in the world with an estimated attendance of more than 5,000 exercise physiologists, applied physiologists, scientists in other specialties, physicians, educators and other health care professionals. This year the KIN department and their collaborators have submitted 19 research studies for presentation at the conference. More impressively, of the first authorships four are undergraduate researchers, 14 are graduate researchers and former students who are current collaborators, and one is a faculty member. These statistics illustrate not only the commitment of the KIN department to research, but also the degree of mentoring that is prevalent in our laboratories.

This is only a single example of how undergraduate and graduate research assistants in the KIN department are establishing their credentials and growing their curriculum vitae in preparation for their futures as nationally-recognized scholars, researchers, and clinicians.

Below is a list of the submissions, authors and affiliations.

1. **Interactive Effect of Beta-Alanine and Resistance Training on Muscular Endurance in Older Adults.**
 Christopher H. Bailey¹, Joseph F. Signorile¹, Amanda M. Luiso¹, Caitlin A. Lowe¹. ¹University of Miami, Coral Gables, FL.

2. **Comparative Recovery Periods in Men and Women to Optimize Post-Activation Potentiation via the Back Squat.**
 Samuel F. Becourtney¹, Nicole K. Rendos¹, Joseph F. Signorile¹. ¹University of Miami, Coral Gables, FL.
3. A Pneumatic Isoinertial Test for Assessing Power Endurance in Older Persons.
Caitlin Lowe¹, Christopher Bailey¹, Joseph F. Signorile¹. ¹University of Miami, Coral Gables, FL.

Kirk B. Roberson¹, Joseph F. Signorile¹, Kevin A. Jacobs, FACSM¹. ¹University of Miami, Miami, FL.

5. Energy Expenditure of Sun Salutation B during High Speed versus Slow Speed Yoga.
Maria Carolina Massoni Martins¹, Melanie Potiaumpai¹, Joseph F. Signorile¹. University of Miami, Coral Gables, FL.

6. Comparative Impacts of Plate-Loaded and Cable Resistance Machines on Muscle Activity and Joint Kinematics.
Mark E. Richardson¹, Moataz Eltoukhy¹, Nicole K. Rendos¹, Joseph F. Signorile¹. ¹University of Miami, Coral Gables, FL.

7. Muscle Activation Patterns of Sun Salutation B during High-Speed versus Low-Speed Yoga.
Melanie Potiaumpai¹, Maria C. Martins¹, Joseph F. Signorile¹. ¹University of Miami, Coral Gables, FL.

8. Changes in Leg Power are Responsible for Clinically Meaningful Improvements in Parkinson’s Disease.
Meng Ni¹, Joseph Signorile². ¹Harvard Medical School, Boston, MA. ²University of MIami, Miami, FL.

Nicole K. Rendos¹, Moataz Eltoukhy¹, Wesley N. Smith¹, Christopher M. Kuenze², Shihab S. Asfour¹, Joseph F. Signorile¹. ¹University of Miami, Coral Gables, FL. ²Michigan State University, East Lansing, MI.

Daniel H. Serravite¹, Arturo Leyva Pizano¹, Joseph F. Signorile². ¹Florida International University, Miami, FL. ²University of Miami, Coral Gables, FL.

11. Effects of Stroboscopic Vision on Sensory Organization Test.
Joo-Sung Kim¹, Hung-Rock Lee², Kyung-Min Kim³. ¹Texas State University, San Marcos, TX. ²University of Central Arkansas, Conway, AR. ³University of Miami, Coral Gables, FL.

12. Relationships between Self-Reported Ankle Function and Hoffmann Reflex Latency in Patients with Acute Ankle Sprain.
Kyung-Min Kim¹. ¹University of Miami, Coral Gables, FL.

13. Pulse Oximetry As A Non-Invasive Method of Predicting Respiratory Compensation During Graded Exercise.
Craig P Flanagan¹, Emily K.W. Flanagan¹, Laura Q. Jimenez¹, Wesley N. Smith¹. ¹University of Miami, Coral Gables, FL.

Emily K W Flanagan¹, Laura Q. Jimenez¹, Craig P. Flanagan¹, Brian Arwari¹, Wesley N. Smith¹. ¹University of Miami, Coral Gables, FL.
15. Hyperthermia During Recovery in Thermally-Challenging Conditions
Afton D. Seeley¹, ², Christopher C. Cheatham¹, Ross A. Sherman¹, YuanLong Liu¹, ¹Western Michigan University, Grand Valley State University, ²University of Miami, Coral Gables, FL.

16. Interappendicular Neurological Coupling during Various Locomotor Tasks in Persons with Spinal Cord Injury
David W. McMillan¹,², Melgar I¹, Dy CJ¹. ¹California State University, Los Angeles, CA. ²University of Miami, Coral Gables, FL.

17. Total Energy Cost of a Single Bout of Circuit Resistance Exercise in Persons with Tetraplegia
Amariah Lem¹, David W. McMillan¹,³, Jochen Kressler², and Mark S. Nash¹. ¹University of Miami Miller School of Medicine, Miami, FL; ²San Diego State University, San Diego, CA, ³University of Miami, Coral Gables, FL.

18. Blood Flow Restriction Fails to Alter Adiponectin Response to an Acute Low-Intensity Resistance Exercise Session
Richard F. Harrington¹, Matthew A. Romero¹, Andrew Ordille¹, and Kevin A. Jacobs FACSM¹
¹University of Miami, Coral Gables, FL 33146

19. Neuro-electric and Behavioral Differences between Yoga Practitioners and Novices during a Cognitive Control Task.
Laura Jimenez¹, Brian Arwari¹. ¹University of Miami, Coral Gables, FL

Congratulations to the KIN faculty and graduate students…and a special "high five" to our undergraduates presenting at this prestigious international conference.
Marissa and Dr. Kevin Jacobs along with big brother Theo welcomed with joy, Lily Margaret Edith Jacobs on Saturday, March 19, 2016.

We proudly introduce our little baby girl

Lily Margaret Edith Jacobs

Born Saturday March 19th, 2016 at 10:32 AM
3 pounds, 13 ounces and 16.5 inches

Lily spent 3 weeks in the NICU after arriving a little on the early side, but has been thriving at home for over a week now

With love from,
Kevin, Marissa, and Big Brother Theo
In 2001, I began studying Exercise physiology at the University of Miami. I was interested in becoming a sports medicine physician. I was an idealistic college student who could not wait to be the person diagnosing, treating and hopefully curing athletes. During my time at the University of Miami, I was able to work with division one athletes, do research, and develop a great foundation of knowledge that has helped me at every step along my journey to becoming a physician.

My time spent at the University of Miami helped me succeed in medical school, residency and a sports medicine fellowship. Spending time in the training rooms and doing a cardiac rehabilitation program taught me about how to evaluate a patient, apply my anatomy knowledge to real patients and start leaning medical vocabulary. I learned how to test athlete’s stamina and tape an injured ankle. A typical day as a sports medicine physician includes taking patients’ medical history, doing thorough examinations, ordering x-rays and blood work, applying casts and giving cortisone injections.

Learning about the cellular makeup of tendons and muscles in exercise physiology classes help me when I do procedures with ultrasound guidance. I have been trained to use ultrasound guidance while injecting into joints or tendons to increase accuracy. Ultrasound is a valuable resource to evaluate patients’ tendons, muscles and bones in real time. Unlike an MRI, I can evaluate a patient for a hematoma, muscle tear or fracture right in the exam room. I can also do dynamic testing. For example, I can move the arm into external rotation to see if the proximal bicep tendon slips out of it bicipital groove or evaluate the UCL by applying a valgus stress to the elbow. Ultrasound is a cheaper diagnostic study than MRI and its use will become more prolific in the years to come.

The University of Miami not only gave me the academic foundation that I needed to succeed, but also provided an emotionally supportive and fun environment when outside of the classroom. I recently visited campus and was able to relive days studying at the pool, competing at Sports fest, hanging out in the dorms and working out at the Wellness center. I was also fortunate to meet up with my most influential teacher at the University, Dr. Joseph Signorelli. He is an amazing professor who inspires passion for learning, research and problem solving. He is very dedicated to his career and his enthusiasm is infectious. I am also passionate about my job and I am forever grateful to the University of Miami for helping me fulfill my goal of becoming a sports medicine physician.

Kylee Eagles
Students in the Field
University of Miami
School of Education & Human Development
Kinesiology & Sport Sciences
PO Box 248065
Coral Gables, Florida 33124
Phone: 305-284-3024
Fax: 305-284-5168
www.education.miami.edu

Check us out on Facebook
University of Miami Kinesiology & Sport Sciences Alumni

Have an alumni update?
Send it to:
p.resnick@miami.edu

*Be sure to include major & graduation year.